Filter Results By:

Products

Applications

Manufacturers

A/D Converters

quantization of an analog signal into a digital signal.


Showing results: 181 - 195 of 222 items found.

  • PXIe-4304, 24-Bit, 32-Channel, 5 kS/s, 42 V, PXI Analog Input Module

    783867-01 - NI

    24-Bit, 32-Channel, 5 kS/s, 42 V, PXI Analog Input Module—The PXIe‑4304 is a filtered analog input module for higher voltage measurements. The module offers the ability to select a digital filter per channel to provide extra filtering performance. You also can operate up to four different sample rates and triggering configurations concurrently to ensure you measure every sensor as needed. The module has an A/D converter per channel to enable a simultaneous sample rate at the maximum sample rate across the input range. The included NI‑DAQmx driver simplifies hardware configuration and measurement.

  • PXIe-4303 , 24-Bit, 32-Channel, 51.2 kS/s, ±10 V PXI Analog Input Module

    783866-01 - NI

    24-Bit, 32-Channel, 51.2 kS/s, ±10 V PXI Analog Input Module—The PXIe‑4303 is a filtered input module for voltage, thermocouple, and current measurements. The module offers you the ability to select a digital filter per channel to provide extra filtering performance. You also can operate up to four different sample rates and triggering configurations concurrently to ensure you measure every sensor as needed. The module has an A/D converter per channel to enable a simultaneous sample rate at the maximum sample rate across the input range. The included NI‑DAQmx driver simplifies hardware configuration and measurement.

  • USB-7845, Kintex-7 70T FPGA, 500 kS/s Multifunction Reconfigurable I/O Device

    783200-02 - NI

    Kintex-7 70T FPGA, 500 kS/s Multifunction Reconfigurable I/O Device - The USB‑7845 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals for complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The USB‑7845 features a dedicated A/D converter per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical DAQ hardware.

  • USB-7845, Kintex-7 70T FPGA, 500 kS/s Multifunction Reconfigurable I/O Device

    783200-01 - NI

    Kintex-7 70T FPGA, 500 kS/s Multifunction Reconfigurable I/O Device - The USB‑7845 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals for complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The USB‑7845 features a dedicated A/D converter per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical DAQ hardware.

  • USB-7855, Kintex-7 70T FPGA, 1 MS/s Multifunction Reconfigurable I/O Device

    782915-01 - NI

    Kintex-7 70T FPGA, 1 MS/s Multifunction Reconfigurable I/O Device - The USB‑7855 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals for complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The USB‑7855 features a dedicated A/D converter per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical DAQ hardware.

  • USB-7846, Kintex-7 160T FPGA, 500 kS/s Multifunction Reconfigurable I/O Device

    783201-01 - NI

    Kintex-7 160T FPGA, 500 kS/s Multifunction Reconfigurable I/O Device - The USB‑7846 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals for complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The USB‑7846 features a dedicated A/D converter per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical DAQ hardware.

  • USB-7846, Kintex-7 160T FPGA, 500 kS/s Multifunction Reconfigurable I/O Device

    783201-02 - NI

    Kintex-7 160T FPGA, 500 kS/s Multifunction Reconfigurable I/O Device - The USB‑7846 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals for complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The USB‑7846 features a dedicated A/D converter per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical DAQ hardware.

  • USB-7856, Kintex-7 160T FPGA, 1 MS/s Multifunction Reconfigurable I/O Device

    782916-01 - NI

    Kintex-7 160T FPGA, 1 MS/s Multifunction Reconfigurable I/O Device - The USB‑7856 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals for complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The USB‑7856 features a dedicated A/D converter per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical DAQ hardware.

  • PCIe-7842, Virtex-5 LX50 FPGA, 200 kS/s Multifunction Reconfigurable I/O Device

    781101-01 - NI

    Virtex-5 LX50 FPGA, 200 kS/s Multifunction Reconfigurable I/O Device - The PCIe‑7842 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals for complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The PCIe‑7842 features a dedicated A/D converter per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical DAQ hardware.

  • PCIe-7841, Virtex-5 LX30 FPGA, 200 kS/s Multifunction Reconfigurable I/O Device

    781100-01 - NI

    Virtex-5 LX30 FPGA, 200 kS/s Multifunction Reconfigurable I/O Device - The PCIe‑7841 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals for complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The PCIe‑7841 features a dedicated A/D converter per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical DAQ hardware.

  • 8 Channels, RTD Measurement

    RT1 - North Atlantic Industries

    The module provides 8 measurement channels, and can be programmed for interfacing to 2, 3, and 4-wire platinum RTD sensor configurations. The 4-wire mode (default) is the most accurate, providing excellent stability and repeatability. The RTD channels feature individual A/D converters and precision excitation/current drive. Programmable lead-wire compensation is provided for inherently less accurate 2 and 3-wire configurations. All RTD channels are self-aligning because each channel is automatically "aligned" on a rotating basis to eliminate offset and gain errors throughout the operating envelope. Programmability for expected resistance range and wire modes allows for optimization of scaling/resolution, as well as flexibility in reading many RTD types.

  • PXIe-4310, 16-Bit, 8-Channel, 400 kS/s/ch, Ch-Ch Isolated PXI Analog Input Module

    784813-01 - NI

    16-Bit, 8-Channel, 400 kS/s/ch, Ch-Ch Isolated PXI Analog Input Module—The PXIe-4310 is a channel-to-channel isolated, filtered analog input module for higher voltage measurements. The module offers the ability to select an analog filter per channel to provide extra filtering performance. You also can operate up to four different input ranges per terminal block and triggering configurations concurrently to ensure you measure every sensor as needed. The module has an A/D converter per channel to enable a simultaneous sample rate at the maximum sample rate across the input range. The included NI-DAQmx driver simplifies hardware configuration and measurement.

  • PCIe-7852, Virtex-5 LX50 FPGA, 750 kS/s Multifunction Reconfigurable I/O Device

    781103-01 - NI

    Virtex-5 LX50 FPGA, 750 kS/s Multifunction Reconfigurable I/O Device - The PCIe‑7852 features a user-programmable FPGA for high performance onboard processing and direct control over I/O signals for complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The PCIe‑7852 features a dedicated A/D converter per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical DAQ hardware.

  • PXI-7842, Virtex-5 LX50 FPGA, 200 kS/s PXI Multifunction Reconfigurable I/O Module

    780338-01 - NI

    Virtex-5 LX50 FPGA, 200 kS/s PXI Multifunction Reconfigurable I/O Module—The PXI‑7842 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals to ensure complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The PXI‑7842 features a dedicated A/D converter (ADC) per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical data acquisition hardware.

  • PXI-7851, Virtex-5 LX30 FPGA, 750 kS/s PXI Multifunction Reconfigurable I/O Module

    780339-01 - NI

    Virtex-5 LX30 FPGA, 750 kS/s PXI Multifunction Reconfigurable I/O Module—The PXI‑7851 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals to ensure complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware‑in‑the‑loop testing, custom protocol communication, sensor simulation, and high-speed control. The PXI‑7851 features a dedicated A/D converter (ADC) per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical data acquisition hardware.

Get Help